中公教育·公益岗

400-6300-999

2850807784

考试公告 考试快讯 报考指导 报名入口 准考证打印 成绩查询 面试通知

行测 申论 公共基础知识 面试 时政热点

往年试题 模拟试题

您所在位置:公益性岗位 > 备考资料 > 行测 >

公益岗行测技巧:“韩信点兵”问题破解大法

2017-12-12 15:34:26 来源:公益性岗位考试网

【导语】行测是公益性岗位考试中很重要的一门,做题当中需要运用很多技巧。当你掌握了技巧后,公益岗行测的题目也就没有想象中的那么难了。中公教育公益岗考试网为大家梳理了一些做题技巧,希望可以帮助考生有所提升。

点击加入公益性岗位考试交流群 271506480 领取复习资料

微信搜索:gygoffcn 及时关注公益岗考试信息

2017公益岗考试资讯 你想了解的这里都有|备考资料大全|模拟试题

“韩信点兵”的故事家喻户晓。据传:秦朝末年,楚汉相争,有一次韩信带1500名将士与楚军大战,楚军不敌,败退回营,而汉军也有四百多伤亡,只是具体伤亡多少一时还不知道。在汉军整顿回营的过程中,楚军骑兵来袭,于是韩信急速点兵迎敌。不一会儿,副官报告共有1035人,他还不放心,于是他命令士兵3人一列,结果多出2名;接着他命令士兵5人一列,结果多出3名;再命令士兵7人一列,结果又多出2名。韩信马上向将士们宣布:值日副官计算错了,我军共有1073名勇士,敌人不足500,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”,于是士气大振,交战不久,楚军便大败而逃。

在三次列队后,韩信是如何算出了士兵的人数?这其中又蕴含着怎样的道理呢?我们把“韩信点兵”故事中涉及到数学关系提炼出来,得到如下表述:有一个介于1000-1100之间的四位数,它除以3余数是2,除以5余数是3,除以7余数是2,那么这个数是几?此类问题被称之为“剩余问题”,在公益岗行测考试中也时常出现。

那么此类问题该如何破解呢?核心思想是:先找到符合要求的数的通项公式,再根据数值的范围确定具体取值。具体操作方法:同余特性。下面中公教育的老师将按照由易到难、从特殊到一般的顺序,和大家分享“同余特性”在“剩余问题”求解过程中的操作步骤。

(一)特殊模型

1.余同加余

若多个除式的被除数相同,余数也相同,那么这个被除数的值等于多个除数的最小公倍数加余数。如:X÷3余1,X÷5余1,那么X=15k+1。

例1.三位数的自然数P满足:除以7余2,除以6余2,除以5也余2,则符合条件的自然数P有:( )

A.2个 B.3个 C.4个 D.5个

【答案】C。

【中公解析】3个除式的被除数相同,均为自然数P,余数都是2,而除数7、6、5的最小公倍数是210,根据余同加余可得,P=210k+2。再结合题意,P是三位数,有100≤210k+2≤999,k可取值1、2、3、4,所以符合条件的P有4个,答案选C。

2.和同加和

若多个除式的被除数相同,除数和余数的和也相同,那么这个被除数的值等于多个除数的最小公倍数加“除数和余数的和”。如:X÷3余2,X÷4余1,那么X=12k+5。

例2.有一箱水蜜桃二百多个,每堆10个多3枚,每堆12个则余1个。则这箱水蜜桃有多少个?( )

A.243个 B.253个 C.263个 D. 273个

【答案】B。

【中公解析】两个除式的被除数相同,均为水蜜桃的个数,记为X,两式“除数加余数的和”均为13,而除数10、12的最小公倍数是60,根据和同加和可得,X=60k+13。再结合题意,可知200<60k+13<300,k只能取4,所以X=60×4+13=253,答案选B。

扫描左侧二维码或者手动搜索"gygoffcn",来关注公益性岗位考试微信公众号,及时获取考试的相关信息,可以向小编进行提问,还有很多备考资料和习题可以领取!
>>点击进入:公益岗网站手机页面

公告预约

*姓名

*电话

QQ

*省市