2019-08-09 11:58:05 来源:中公公益性岗位考试网
在解决方阵问题时,首先应该准确判断方阵的类型,要搞清方阵中的一些量(如层数、最外层人数、最里层人数、总人数)之间的关系。解题时要开动脑筋,运用相关公式,用多种方法来解题。
三、方阵问题考点精讲
1.实心方针
(1)方阵总人数=方阵最外层每边人数的平方
(2)方阵每层总人数=方阵每层每边人数×4-4
(3)方阵每层每边人数=(方阵每层总人数+4)÷4
(4)奇数型实心方阵的最外层每边人数=2×层数-1
(5)偶数型实心方阵的最外层每边人数=2×层数
例题1:在一次阅兵式上,某军排成了30人一行的正方形方阵接受检阅。最外两层共有多少人?
A.900 B.224 C.300 D.216
【中公解析】B。根据题意可知,阅兵方阵为实心方阵。最外层每边30人,则最外层总人数为30×4-4=116人;根据相邻两层相差为8人可知,次外层总人数为116-8=108人;最外两层共有116+108=224人。
2.空心方针
根据“相邻两层的人数相差为 8”,即以方阵最外层人数为首项,依次向里,组成一个公差为-8 的等差数列,利用等差数列求和公式可得:
方阵总人数=层数×最外层总人数-(层数-1)×层数÷2×8
=层数×最外层总人数-(层数-1)×层数×4
方阵总人数=层数×最内层总人数+(层数-1)×层数÷2×8
=层数×最内层总人数+(层数-1)×层数×4
公式不需要直接记忆,只要记住每一层的人数能够组成一个公差为-8的等差数列就可以了。
例题2:有一队士兵排成若干层的中空方阵,外层人数共有60人,中间一层共44人,则该方阵士兵的总人数是:
A.156人 B.210人 C.220人 D.280人
【中公解析】C。方法一,根据“相邻两层人数相差为8”,结合“外层人数共有60人,中间一层共44人”,可知这个方阵从外到内每层人数依次是60、52、44、36、28,所以该方阵士兵的总人数是60+52+44+36+28=220人。
方法二,最外层到中间一层相差(60-44)÷8=2层,即中间一层是第3层,一共有5层,则总人数是5×44=220人。
相信大家通过上面两道题,对于方阵问题一定是有了基本的了解了。对于这类问题,我们就是熟记方阵的基本公式和规律,重点掌握实心方阵。相信通过今天的学习,一定能够为你秒杀数学题目再添一把利器!
相关推荐:公益性岗位行测言语理解主旨观点题,抓住“主要”是关键
更多公益性岗位考试信息请点击查看:中公公益性岗位考试网,了解公益性岗位考试时间、公益性岗位招考公告和公益性岗位考试试题。